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Abstract—In the development of an empirical relationship be-
tween the leaf area index (LAI) and the vegetation index (VI), the
infrequency of the medium resolution VI often makes it difficult,
sometimes impossible, to find VI observations acquired close to
the LAI measurement date. To overcome this dilemma, this paper
presents a method, named reduced simple ratio (RSR), to recon-
struct seasonal time series of a VI at the Landsat resolution. Each
RSR time series is represented by a double logistic (D-L) curve with
seven unknown parameters. The methodology solves these param-
eters using a multi-objective optimization method by blending fre-
quentMODIS observations with Landsat observations acquired at
a few dates (usually fewer than seven) in a year. We tested the re-
constructing approach in a boreal forest in Canada and a cropland
area in Australia. The reconstructed Landsat RSR compared well
with the observed RSR even when only two Landsat images were
used for reconstruction, and better accuracy was achieved when
more Landsat images were used. Ground LAI measurements were
taken at a date not coincident with any of the Landsat dates in the
Canada study area. Results of LAI retrieval showed that the mea-
sured LAI had a higher correlation with the reconstructed RSR at
the measurement date than with the observed Landsat RSR at the
three acquisition dates.

Index Terms—Double logistic, fusion, leaf area index, multi-
objective optimization.

I. INTRODUCTION

L EAF AREA INDEX (LAI) is defined as half the total
(all-sided) green leaf area per unit ground area [1]. It is an

important biophysical parameter for process-based models for
various purposes including plant growth estimation, numerical
weather forecast, and hydrological and ecological studies. Var-
ious studies have found fairly strong relationships between LAI
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and vegetation indices (VIs), such as normalized difference veg-
etation index [2], simple ratio (SR) [3], infrared simple ratio [4],
and reduced simple ratio (RSR) [5]. The superior performance
of RSR for LAI estimation in coniferous stands over other VIs
is supported by results in [6]–[12] and in deciduous stands in
[5], [13]. And RSR has been used for LAI mapping at the re-
gional scale [14], [15]. To develop the relationship between LAI
and VI, the VI must be frequent enough to adapt to the arbi-
trary of the LAI measurement dates. Coarse spatial resolution
(250–7000 m) data provide favorable data sources for the re-
trieval of high temporal resolution VI. However, the spatial het-
erogeneity within a pixel is a main cause for the distortion of the
LAI retrieval from coarse resolution data [13], [16], [17]. Op-
tical sensors at medium resolutions (10–100m) can provide spa-
tial information at the required resolutions [13], but their tem-
poral resolution is lacking. Thus, in previous studies [7], [8],
[13], the relationship between LAI and RSR was usually estab-
lished using Landsat images acquired at different dates from the
LAI measurement date.
This intrinsic tradeoff between the spatial and temporal reso-

lutions of satellite data has motivated the exploration of various
techniques to fuse satellite images from multiple sensors to
generate high spatial and temporal resolution data. Different
from data assimilation, these techniques try to integrate data
from other satellites bearing complementary characteristics
[18]–[24] rather than to integrate physical models [25]. The
spatial and temporal adaptive reflectance fusion model, which
blends TM/ETM+ and MODIS data to generate synthetic
Landsat-like imagery on a daily basis [19], represents a sig-
nificant step in this direction. Huang and Song [20] proposed
a SParse-representation-based SpatioTemporal reflectance
Fusion Model to form a unified framework for fusing remote
sensing images with both phenology change and cover type
change. Neither of them utilized temporal information of veg-
etation phenological profiles from the frequent low-resolution
data. The seasonal variation in the VI has been described by
using double logistic (D-L) functions [21], [22], which have
created superior performance to the other describing functions
[23]. Recently, Gray and Song [24] reconstructed time series of
Landsat data through two Landsat observations at the growing
season by using the D-L function. However, this method has
two limitations: 1) the number of Landsat acquisitions for
the reconstruction is limited to two which must be observed
when VI is at its minima and maxima values of the growing
period; and 2) it assumed that VIs in all Landsat pixels are only
different at minima and maxima VI values in the phenology
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Fig. 1. The left and right images show the TM middle-infrared, near-infrared, and red bands in R/G/B composite acquired on June 16, 2009 for the Canada study
area and on October 7, 2001 for the Australia study area, respectively. The middle image shows the corresponding bands of the 16-day MODIS NBAR composite
(August 21–September 5) resampled to 250 m for the Canada study area. Green, blue, and red dots correspond to the valid MODIS sampling after eliminating the
extraordinary samples (Section II-C).

trajectory and thus ignored the other difference in phenology
metrics like on-set of green dates, rate of green-up, rate of
withering, etc.
To address these problems, this paper presents a novel spa-

tial temporal fusion method to reconstruct the seasonal time se-
ries VI at the Landsat resolution. To account for the phenology
variance within a vegetation type [22], the proposed method
models its variation behavior as that the fitted D-L parame-
ters for all individuals of time series data follow a statistical
(e.g., Gaussian) distribution [26]. To fuse seasonal time series
of MODIS data and Landsat data acquired at arbitrary date(s)
within a year, the methodology is based on a multi-objective
optimization technique.

II. TEST SITE AND DATA PREPROCESSING

A. Test Site and Samples

The first study area is located at a boreal forest near Sud-
bury, Ontario, Canada, with 90 90 MODIS 500m pixels
(Fig. 1), which is covered by diverse boreal vegetation types,
including deciduous and evergreen forests based on the 2005
classification map in the North American Land Cover Data-
base (NALCD2005) [27] (Fig. 1). The second study area is
an irrigated rice field located in southern New South Wales
with an area of 2193 km ([28, Figs. 1(a)–(c)] and Fig. 1).
Three clusters were generated by unsupervised classification of
the MODIS data, which roughly represent the flood irrigated
cropland, furrow irrigated cropland and dryland woodlands,
respectively. The MODIS samples were randomly selected
according to the classification map.

B. LAI Measurements in Canada Study Area

For the Canada study area, a field campaign for the LAI
measurement was performed on August 17-19, 2011. Fourteen
50 50 m plots (Fig. 1) were established by marking two rows
of flags. Two of the plots were covered by mixed forest, one
by broadleaf forest, and the others by needle forest, which
contains black spruce (Picea mariana, BS) and jack pine
(Pinus banksiana, JP) species. There were thirteen sites with

trees older than 40 years old, and one site about 20 years old.
The effective LAI ( ) was measured and calculated using the
LAI-2000 plant canopy analyzer [29] by using its rings 1–5 (0
to 75 ). A foliage clumping index ( ) characterizing the spatial
distribution pattern of the canopy components as a correction
factor to obtain the true LAI was used [30]. The clumping
index includes two parts: 1) the effect of foliage clumping at
scales larger than the shoot, and 2) the needle-to-shoot area
ratio quantifying the effect of needles clumping within a shoot.
The first part was measured using Tracing Radiation and Archi-
tecture of Canopies (TRAC) [31] and the woody-to-total area
ratio was set to 0.145, 0.225, and 0.215 for BS, JP, and aspen
(Populus tremuloides), respectively, while the needle-to-shoot
area ratio of 1.57 measured by Chen et al. [32] for coniferous
forests was used for the second part.

C. Data Preprocessing

For the Canada study area, Landsat 5 TM 1G processing
level imagery was collected at three acquisition dates during the
growing season of 2009: June 16, September 4, and September
20. The TM images were first radiometrically calibrated and
atmospherically corrected using the FLAASH model (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes).
The aerosol was retrieved using the Kaufman–Tanre (KT)
aerosol model [33]. The clouds and cloud shadows were
masked out by utilizing an object-based detection algorithm
developed by Zhu and Woodcock [34]. For the Australia study
area, eight Landsat 7 ETM+ images were collected during
the summer growing season (i.e., southern hemisphere) at
the following dates: November 25 and December 04 in 2001,
and January 05, January 12, February 13, March 10, March
17, and April 2 in 2002, which were preprocessed following
Emelyanova et al. [28].
For both study areas, the MODIS Nadir BRDF-Adjusted Re-

flectance (NBAR) products (MODIS/Terra Nadir BRDF-Ad-
justed Reflectance 16-Day L3 Global 500 m SIN Grid) [35]
were collected. Only data with quality label of ‘good’ were used.
The VI derived fromMODIS is sensitive to atmospheric effects,
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Fig. 2. Flow chart of Landsat RSR time series reconstruction using MODIS
time series.

which generally causes a decrease in the retrieved VI. Thus,
we first tried to remove such effects using the locally adjusted
cubic-spline capping (LACC) data smoothing technique [36].
After data smoothing, some phenological response curves of the
MODIS samples may not exhibit a reverse ‘U’ shape. We elim-
inated these extraordinary samples first as they may cause bias
in retrieving vegetation temporal information. After this elimi-
nation, for the Canada study area, a total 792 out of 1000 needle
forest samples, 35 out of 40 broadleaf forest samples, and 749
out of 800 mixed forest samples was preserved. For the Aus-
tralia area, a total 143 out of 200 dryland woodlands samples,
708 out of 800 flood irrigated cropland samples, and 206 out of
300 furrow irrigated cropland samples was preserved.

III. RECONSTRUCTING TIME SERIES OF LANDSAT RSR
RELATED TO LAI

After data preprocessing, the complex sequence of operations
for reconstructing time series of Landsat RSR related to LAI is
depicted in the flowchart shown in Fig. 2. Each of the segments
is discussed in the rest of this section.

A. Intercalibration of Landsat and MODIS RSR

RSR is an improved version of SR, which is a reflectance ratio
between the red and NIR bands,

RSR (1)

where , , and are the red, NIR, and short-
wave infrared (SWIR) reflectance, respectively. min( )
and max( ) are the minimum and maximum SWIR
reflectance after excluding water and shadow pixels. In this
study, for Landsat images where all the cloud shadow, cloud,
and water pixels have been masked out, they are defined as the
0.4% cutoff points in the histograms of SWIR reflectance in
the image. By contrast, for MODIS images, they are defined as
the 1% minimum and maximum cutoff points as some pixels in
the NBAR composite images are water-mixed due to the large
footprint of the MODIS pixel.
Intercalibration was conducted to reduce the RSR difference

between Landsat and MODIS sensors [37], [38]. In order to
reduce the uncertainties due to the geolocation errors [39] in
the intercalibration, both Landsat and MODIS images were de-
graded to 1.5 km spatial resolution by taking the average of the

Fig. 3. The seven parameters of the double logistic (D-L) function.

fine-resolution pixels, which was done for the closest acquisi-
tions available for these two sensors. In the degraded VI maps,
we screened out pixels which have more than 10% area affected
by the cloudmasks of Landsat images, based onwhich we estab-
lished a second-order polynomial regression for intercalibration
as suggested by Rochdi and Fernandes [40]. All MODIS RSR
values were calibrated against the Landsat RSR values by using
the established relationship.

B. Modeling Temporal Information Through Fitting D-L
Curves

We used the D-L function [21] to express the phenological
response curve of RSR, i.e.,

(2)

where is the time variable (i.e., day of year for the Canada
dataset, or day since the start of the growing season for the Aus-
tralia dataset), is the RSR and is related to the maximum
value (no dimension) of the RSR during the growing season.
The RSR observed before spring green-up differs from that ob-
served at the end of the seasonal cycle (or snow-free observed
cycle), which can be represented by and , respectively.
and (day ) denote the slopes of the first and second inflec-
tion points, respectively, related to the vegetation growing and
withering speed. and (day) are the dates of the two inflection
points. This equation makes ascending and descending parts of
the curve non-symmetric, representative for the start and end of
the growing season. Physical meanings of the seven parameters
are shown in Fig. 3. Given an RSR time series, and can be
set to the snow-free RSR at the start and end of the observation
period. The other five parameters are fitted through an iterative
nonlinear least-squares procedure.
The spectral characteristics of different pixels from the same

vegetation type may exhibit a high degree of variability in terms
of vegetation species composition, forest structure, vegetation
age, and variations in environmental factors (topography, water
availability, soil type, etc.) [22], [26]. Thus, they may have dif-
ferent parameter vectors of the fitted D-L curves. All the D-L
parameter vectors from vegetation type are assumed to have a
normal distribution as follows:

(3)
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where represents the parameter vector by stacking the seven
D-L parameters in (2) (thus , ),
and and are the mean vector and covariance matrix of the
parameter vectors, respectively.
Mixed pixels are more frequent and pure pixels are fewer

in MODIS images than in their corresponding Landsat images.
However, to blend these two types of images we assume that
pixels from the same vegetation type in different spatial reso-
lutions may share similar combination of possible pixel types
(each pixel type has a specific vegetation species combination,
vegetation age, vegetation density, and environmental condi-
tion). Hence, the D-L parameter vectors for all the RSR time
series derived from Landsat data follow the same distribution
derived from the MODIS data as depicted in (3).

C. Reconstructing Time Series of Landsat RSR Through
Multi-Objective Optimization

The time series of the Landsat RSR is reconstructed through
an optimization to achieve two objectives. The first objective,
, is that the fitted curve should be as close as possible to

the observed Landsat RSR. Given a Landsat sample , suppose
is a set of the Landsat acquisition dates with

observed value of ,

(4)

where is the D-L function with parameter vector .
The second objective, , is that the derived D-L parameters
should follow the normal distribution (Eq. (3)). Suppose the
target Landsat pixel belongs to a vegetation type ,

(5)

The parameter vector should also satisfy three constraints.
First, and ( - ) should be greater than 0, which is
the necessary condition to make RSR increase at the start and
decrease at the end of the growing season. Second, and
should be greater than 0. Third, should be in the range of 2
standard deviations.
The main uncertainty of the first objective comes from the ob-

served Landsat RSR, e.g., bias in radiometric calibration, sensor
system noise, or imprecise parameters used in the atmospheric
correction [4], and it should not vary much among different
cover types. Thus, the first objective in (4) utilizes an iden-
tity covariance matrix unlike the specific covariance matrix as
a function of land cover class as specified in (5) for the second
objective. It should be noted that the two objectives serving for
different purposes and bearing different units are complimen-
tary and competitive. They are treated in the same dimension in
optimization because their values are both normalized: the first
objective represents a normalized distance of RSR, while the
second represents a normalized deviation measure of parameter
values. To measure and reflect the relative uncertainty (covari-
ance matrix) of the constraint given by objective 1 versus ob-
jective 2, a relative scaling parameter is introduced. Then by
minimizing the maximum of , the optimal parameter

vector can be obtained by solving the following optimiza-
tion problem with inequality constraints, i.e.,

(6)

where extracts the diagonal of an array. We used the
Matlab Optimization Toolbox to solve such an equation, where
a maximum number of 400 iterations and the termination
tolerance on the function value of 1E-6 are set.
The proposed method is vegetation-type-based. Given a

Landsat pixel without its cover type information, we selected a
model from the three vegetation type models whose mean RSR
has the shortest Euclidean distance to the observed Landsat
RSR as presumably related to this vegetation type.
The absolute difference (AD), relative difference (RD), cor-

relation coefficient (CC), and root mean square error (RMSE)
were used as the assessment criteria for evaluation. AD is de-
fined as the absolute difference between the reconstructed and
the observed RSR. RD is defined as the ratio of AD to the ob-
served value. CC, known as Pearson’s R, is a measure of the
strength of the linear relationship between the reconstructed and
the observed RSR. The method proposed by Gray and Song
(GS) has been used for comparison. Note the necessary con-
dition of their method, that two Landsat observations should be
acquired when VI is at its minima and maxima, is mostly not
satisfied in our observation date combination set. We thus ex-
tend their method by using objective 1 in (4) to estimate ,
, and , where , while the other four parameters of

the D-L curve are set to their mean value as done by Gray and
Song [24].

D. Developing Relationship between RSR and LAI

There exists a linear regression relationship between RSR and
LAI, i.e.,

(7)

It should be noted that such a relationship may vary both sea-
sonally in response to phenological development of the trees and
solar zenith angle variations of the observation data.

IV. EXPERIMENTAL RESULTS

A. MODIS RSR Fitted With D-L Function

Table I shows the average RMSE for all samples in each veg-
etation type for the Canada study area. For all the three vege-
tation types, the RMSE was smaller than 0.15. The mean (M)
and standard deviation (SD) (the diagonal element in the co-
variance matrix) of the fitted parameter vectors are shown in
Table II. Without exception, the three parameters , , and ,
representing the starting growing season, always had lower SDs
than their corresponding parameters , , and representing
the end of the growing season. A possible explanation is that,
at the end of the growing season, the variation caused by en-
vironmental factors accumulated from the start of the growing
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season and thus the spectral characteristic differences among
pixels were larger than those at the start of the growing season.

B. Validation Against MODIS RSR

The MODIS seasonal VI time series was first reconstructed
from their RSR values acquired at only a few dates (less than
or equal to 7) by using the Canada forest study area. Then the
MODIS RSR values observed on the other dates were used for
the validation. Two sets (A and B) of observation dates com-
bination were used for the reconstruction based on their distri-
bution pattern. The observation dates in the set A were equally
distributed along the observation period and have different num-
bers of MODIS observations from 2 to 7 on the following dates:
[185 265], [153 217 281], [145 193 221 289], [137 177 217 257
297], [129 169 201 233 265 305], and [129 161 193 217 249 281
313]. The dates in the set B were randomly distributed along
the observation period and have [121 281], [209 217 249], [209
273 281 289], [185 217 241 249 281], [129 161 257 265 273
289], and [121 129 161 177 273 281 289]. The average AD and
average RD were calculated for each vegetation type as func-
tions of the number of MODIS observations in set A (Fig. 4).
Mostly, the proposed method was superior to the GS method.
For the proposed method, 1) the average ADs among these three
types had some differences (Fig. 4(a)), while as for the average
RDs there were no large differences among them (Fig. 4(b))
due to the differences in the original RSR values; 2) as the
number of observation dates increased, the error decreased. For
GS method, 1) the accuracy was sensitive to the forest type and
was superior for the broadleaf forest; 2) increasing the number
of the observation dates contributed little to the reconstruction
accuracy. In the following experiments of this section, if not
specified the relative scaling parameter was set to 10.
The sensitivity analysis of the relative scaling parameter

in (6) for the two MODIS experimental sets was performed
(Fig. 4). A larger value of means more contribution from the
first objective and the less contribution from the second objec-
tive. An extreme case would be that is infinity, where only the
first objective is effective in the optimization. In such a case, it
is the same as the GS method except that seven D-L parame-
ters are to be estimated (only two in GS). Obviously, it is an
ill-posed problem as we do not have seven Landsat observations
for the estimation. The randomness and the dependence on the
initial value of the solution will be high from the mathemat-
ical perspective, while there may be many curves satisfying the
minimization of the first objective. In all the experiments, the
initial values were set to be the mean parameters as specified in
Table II. We draw such case (Fig. 4) as is ‘INF’. Too much
contribution from objective 2 may restrict the solution space to
a small interval around the mean value, which may not contain
the best solution. Thus, for all the cases the accuracy increased
with increasing when it was less than 5 (Fig. 4). Too small
contribution from objective 2 may not properly restrict the so-
lution in the right interval. Thus, for values greater than 20,
the accuracy decreased for some date combinations, especially
for the set B experiment (Fig. 4(d)), indicating the contribution
of the second objective. The accuracy was stable and best when

TABLE I
RMSE OF FITTED CURVES FOR THREE VEGETATION TYPES

TABLE II
MEAN (M) AND STANDARD DEVIATION (SD) OF ALL THE PARAMETERS

RETRIEVED FROM EACH VEGETATION TYPE

In the first column, ‘N’ indicates needle forest with 792 samples, ‘B’
indicates broadleaf forest with 35 samples, and ‘M’ indicates mixed forest
with 749 samples.

ranged from 5 to 20, which did not vary among different
cover types. An interesting finding was that when equals to
infinity, the reconstruction accuracy from six MODIS observa-
tions was much worse than that from five or even fewer ob-
servations (Fig. 4 (d), (f), and (h)). This is because without the
second objective to constrain the curve towards a regular sea-
sonal pattern, the more observations used for the reconstruc-
tion, the higher tendency to over-fitting of the observed values.
The over-fitting happened even when we had seven observa-
tions (enough to estimate unknown parameters) for the recon-
struction (Fig. 4 (d), (f), and (h)). Such cases also indicated the
importance of the second objective.
Comparing sets A and B in Fig. 4, we can see that the distri-

bution of the acquisition dates did affect the reconstructed re-
sult. We used three MODIS observations for the reconstruction
but with 13 different acquisition date combinations which were
randomly distributed (Fig. 5). As expected, the more spread out
is the distribution of the acquisition dates, the higher the recon-
struction accuracy.

C. Validation Against Landsat RSR

There are still some non-vegetation (e.g., bare land) pixels
in the Landsat images after masking out water and cloud pixels.
The rules for building vegetationmasks were that for the Canada
forest area the vegetation pixels should have RSR values greater
than 3.0 on September 4 and for the Australia cropland study
area the average vegetation pixel RSR of the eight Landsat im-
ages should be greater than 1.0.
For the Canada forest area, TM observations at two of the

three acquisition dates in 2009 are used for the reconstruction
and the remaining one is used for the validation. If two TM ob-
servations on June 16 and September 20 are used for the recon-
struction, the observed TM data on September 4 will be used for
the validation. We refer to this case as ‘September 4’ validation
experiment. Similarly ‘June 16’ and ‘September 20’ validation
experiments are also defined. For the Australia cropland area,
with eight Landsat images available, reconstruction was made
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Fig. 4. The average AD (a) and average RD (b) as functions of the number of MODIS observations used in the reconstruction for set A by using different methods
for different vegetation types. The average AD as functions of the relative scaling parameter for MODIS sets A and B for needle forest (c) and (d), mixed forest
(e) and (f) and broadleaf forest (g) and (h). The legends for (c)–(h) are all the same as shown in (c).

using 2 to 7 Landsat images which results in the following image
combinations: [4 6], [2 4 6 8], [1 2 4 6 8], [1 2 4 5 6 8], and
[1 3 4 5 6 7 8]. These combinations were chosen because their
distributions are relatively spread in the whole observation pe-
riod. Another experiment by using the seven Landsat images
(which are enough to estimate the seven unknown D-L parame-
ters) for reconstruction was designed without using the second
objective, which was referred to as the ‘INF’ case. The relative
scale parameter was set to 5 for all the following experiments.
Figs. 6–9 show the comparison between the reconstructed

RSR and the observed Landsat RSR in different ways. These
two kinds of RSR maps were quite consistent (Fig. 6). The re-
constructed RSR map can be used to replace the affected pixels
(Fig. 6(b) and (c)). Comparing the three experiments for the
Canada forest area, the worst reconstructed results were found
in the ‘June 16’ validation experiment (Fig. 7). This is because
in that experiment, RSRs observed at both dates for the recon-
struction were within the end of the growing period and thus
provided little information for the start of the growing period.

Fig. 5. Reconstruction accuracy sensitivity to acquisition date combinations
(the rectangles by different colors) (each line represents its corresponding accu-
racy) for reconstruction.
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Fig. 6. (Top) The MODIS RSR image (after calibration) from the NBAR August 29–September 13 composite (a), the TM RSR images observed on September
4 (b), reconstructed on September 4 from two Landsat images (c) for the Canada forest area; and (Bottom) The MODIS RSR image (after calibration) from the
NBAR December 27, 2001–January 11, 2002 composite (d), the ETM+ RSR images observed (e) on January 5, 2002, and reconstructed (f) on January 5, 2002
from the other seven images for the Australia cropland area. The non-vegetation pixels are displayed as white.

Fig. 7. The observed RSR against the reconstructed RSR from both the GS method (top) and the proposed method (bottom) for the three validation experiments
for the Canada forest area, where CC is correlation coefficient, AD is absolute difference, and RD is relative difference.
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Fig. 8. The observed versus the reconstructed Landsat RSR from the proposed method for the six validation experiments (a)–(f), the GS method (g) and INF
method (h) using seven Landsat images for the Australia cropland area, where CC is correlation coefficient, AD is absolute difference, and RD is relative difference.

The reconstructed results by the GS method showed its weak-
ness compared to that by the proposed method (Fig. 7) as the
GS method allowed changing only and in the optimiza-
tion, which was more obvious when the number of TM obser-
vations used for the reconstruction was larger than two (e.g.,
seven in Fig. 8(f) and (g)). The more Landsat images used for
the reconstruction, the better accuracy (RD and AD in Fig. 8)
could be achieved. Comparing Fig. 8(f) with Fig. 8(h), the con-
tribution of the second objective was obvious even though we
had seven Landsat images for the reconstruction. These find-
ings corresponded to the experimental results from the MODIS
dataset in Section IV-B.

D. Utility for the Development of the Relationship Between
LAI and RSR

For the Canada study area, the LAI measurement date was
different from any of the TM acquisition dates (Fig. 9(d)). Thus,
we used the RSR on the LAI measurement date reconstructed
from all three TM acquisitions for the relationship develop-
ment. The effective LAI values were plotted against the recon-
structed RSR on the LAI measurement date (August 18, 2009,
Fig. 10(d)) and the observed TM RSR acquired at the three
different dates (Fig. 10(a)–(c)). Correspondingly, the true LAI
values were also plotted against different kinds of RSR (Fig. 11).
The trend line in each plot was fitted by using (7) with value
of 0 (Figs. 10 and 11), which represented the offset in the linear
relationship.
Comparing Figs. 10 and 11(a)–(c), the correlation (R square)

between effective (true) LAI and the TM RSR acquired on June
16 was better than that on September 4 and September 20. The
poor performance on September 4 was possibly because four of
the 14 plots were very close (three of them are less than 50 m)
to the cloud pixels that day. However, the poor performance on

September 20 may be because that interval between August 20
and September 20 was at the end of the growing season which
showed more seasonal variation than between June 16 and Au-
gust 18, at the start of the growing season (Table II).
Comparing Figs. 10, 11(d) with Figs. 10, 11(a)–(c), the re-

constructed RSR on the LAI measurement date had better rela-
tionships (higher R squares) with the effective (true) LAI than
the observed Landsat RSR on the three acquisition dates. This
indicated that the temporal information borrowed from the time
series of MODIS RSR could help reconstruct the RSR seasonal
variation at Landsat resolution by the proposed method.
The regression significance between RSR and the effective

LAI was greater than that with the true LAI. This was similar to
the results in [3] regarding relationships between SR and LAI.
This is because the essential optical remote sensing signal is
from the canopy and its gap fraction, which is converted to ef-
fective LAI rather than LAI. Mono-angle remote sensing such
as Landsat TM is more sensitive to effective LAI than to true
LAI with clumping [41].
The coefficients, which represented the slopes in the

linear relationships between the true LAI and the RSR ob-
served on June 16, September 4, and September 20 shown in
Fig. 11(a)–(c), were closer to 1.242 in [13] than that between
true LAI and the reconstructed RSR on August 18, as they
both have a mismatch between the acquisition dates of satellite
data and the LAI measurement date due to the difficulty of
collecting Landsat data as stated in Section I.

V. CONCLUSION

This paper presents a novel spatiotemporal fusion algorithm
based on the D-L function and a multi-objective optimization
method to reconstruct seasonal variation of RSR at high spatial
resolution. The experiments of reconstructing RSR time series
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Fig. 9. The reconstructed RSR time series of five (two needle forest, two mixed forest, and one broadleaf forest) samples selected from the 14 LAI measurement
plots in the Canada study area (a) and (b), and the reconstructed RSR time series of six (two dryland woodlands, two flood irrigated cropland, and two furrow
irrigated cropland) samples selected in the Australia study area (c) and (d). The TM RSR for the reconstruction (squares), TM RSR for the validation (circles),
reconstructed TM RSR on the LAI measurement date (stars), and the reconstructed time series RSR for each sample (lines) are represented by a unique color.
(a) September 4 validation experiment. (b) Reconstructed time series from the observed RSR on the three acquisition dates. (c) Reconstructed from three observa-
tions. (d) Reconstructed from six observations.

at the Landsat resolution were conducted on a Canada boreal
forest and an Australia cropland area. The more Landsat ob-
servations are used for the reconstruction, the better accuracy
can be achieved. The MODIS prior constraint to the recon-
struction made it possible to estimate the seven D-L parameters
without using seven or more Landsat images. It can avoid the
over-fitting problem when even only seven or a few more than
seven Landsat images were used for the reconstruction. The re-
constructed RSR was plotted against the LAI, which showed a
better relationship than the observed RSR at dates which differ
from the LAI measurement date, indicating the temporal infor-
mation from MODIS time series data was well-blended into the
Landsat data.
Although the proposedmethod is applied to RSR in this study,

it can also be used to reconstruct seasonal variation of surface
reflectance in individual bands. One aspect that we would like to
explore in the future is to validate seasonal LAI and phenology
parameters (e.g., onset and dormancy dates) derived from the
proposed method against ground observations.

Fig. 10. Linear regression models between effective LAI and RSR (observed
RSR acquired (a) on June 16, (b) on September 4, and (c) on September 20, and
(d) reconstructed RSR on August 18 from the three TM acquisitions).
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Fig. 11. Linear regression models between true LAI and RSR (observed RSR
acquired (a) on June 16, (b) on September 4, and (c) on September 20, and
(d) reconstructed RSR on August 18 from the three TM acquisitions).
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