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Abstract Forest stand age plays a crucial role in determining the terrestrial carbon source or sink strength and
reflects major disturbance information. Forests in China have changed drastically in recent decades, but
quantification of spatially explicit forest age at national level has been lacking to date. This study generated a
national map of forest age at 1 km spatial resolution using the remotely sensed forest height and forest type
data in 2005, aswell as relationships between age and height retrieved from field observations. These relationships
include biomass as an intermediate parameter for major forest types in different regions of China. Biomass-height
and age-biomass relationshipswerewell fitted using field observations, with respective R2 values greater than 0.60
and 0.71 (P< 0.01), indicating the viability of age-height relationships developed for age estimation in China.
The resulting map was evaluated by comparison with national, provincial, and county forest inventories. The
validation had high regional (R2 =0.87, 2–8 years errors in six regions), provincial (R2=0.53, errors less than 10 years
and consistent age structure in most provinces), and plot (R2 values of 0.16�0.32, P< 0.01) agreement between
map values and inventory-based estimates. This confirms the reliability and applicability of the age-height
approach demonstrated in this study for quantifying forest age over large regions. The map reveals a large spatial
heterogeneity of forest age in China: old in southwestern, northwestern, and northeastern areas, and young in
southern and eastern regions.

1. Introduction

Forest ecosystems, major contributors to the terrestrial carbon sink in recent decades, play an irreplaceable
role in regulating the global carbon balance by reducing the atmospheric CO2 buildup [Houghton et al., 2000;
Houghton, 2007; Bonan, 2008; Piao et al., 2009; Pan et al., 2011b]. Carbon strength (sink or source) of forest
ecosystems is a reflection of past disturbances and nondisturbance factors (climate change, CO2

concentration, and nitrogen deposition). A number of early studies considered nondisturbance factors in
estimating forest carbon budgets, but the effects of forest stand age were ignored due to the lack of
quantitative knowledge about age distribution. Forest age is widely recognized as a primary driver of forest
structure and function, and affects many components in the forest carbon cycle, including stand biomass
[Pan et al., 2004; Xu et al., 2010], live biomass increment and litter decomposition [Bradford et al., 2008; Xu
et al., 2012], net primary productivity (NPP) [Ryan et al., 1997; Chen et al., 2002; He et al., 2012], net ecosystem
productivity (NEP) [Song and Woodcock, 2003; Grace, 2004; Pan et al., 2011a], and biophysical properties
[McMillan and Goulden, 2008]. Recently increasing studies have highlighted that forest age structure is a
critical factor determining the carbon strength at various spatiotemporal scales and can be used as a
surrogate for major disturbance information such as clear-cut [Chen et al., 2000, 2003; Ju et al., 2007; Turner
et al., 2007;Wang et al., 2007, 2011; He et al., 2011; Zhang et al., 2012]. Thus, it is imperative to develop reliable
and spatially explicit forest age data for improving forest carbon budget simulation.

Optical remote sensing offers important data for mapping regional forest age according to vegetation
spectral signatures and spatial patterns over time [Lucas et al., 1993, 2002]. However, spectral measurements
are typically sensitive to stand age at the early stages of forest growth and quickly saturate following canopy
closure [Sader et al., 1989; Fraser and Li, 2002; Amiro and Chen, 2003; Zhang et al., 2004; Dai et al., 2011]. Time
series of remote sensing data could be used to extract forest age using change detection techniques, but
good quality of long time series data is not guaranteed over large areas [Drake et al., 2011; Li et al., 2014].
Radar measurements, such as those based on interferometric coherence, were used to monitor variations of
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forest age. But the resulting age map is also affected by the saturation effects for mature forests [Drezet and
Quegan, 2007]. Moreover, radar is less species specific than optical methods because the longer wavelength
radiation is less sensitive to biochemical properties (such as soil and plant moisture conditions). Ground-
based forest inventories directly quantify stand age at sampling plots or age classes in a province.
Determination of stand age is, however, an inexact process because averaged or downscaled age in the
sampling area cannot provide spatially detailed characterization of age change [Wang et al., 2007; Vilén et al.,
2012]. In addition, the inventory approach is restricted by data availability and could not be applied
everywhere. Combination of data reflecting forest age from inventories, historical disturbance data (fire scar
polygon and harvesting), and optical satellite data is the most promising method for compiling a regional
forest age map [Chen et al., 2003; Pan et al., 2011a]. However, this method requires acquisitions of
multitemporal data and makes many assumptions. Biometric observations of NPP, biomass, age, and tree
height have been widely available in forest ecosystems, which potentially provide age estimates by
establishing the relationship between age and other biophysical variables. This method does not need too
many assumptions and data, and therefore, it is easy to implement over large areas. The key to the method is
to seek suitable age-related variables and develop analytical models for age estimation.

Because forest stand age has considerable spatial variability in China, it is difficult to obtain the wide range of
spatially explicit data required for forest age estimation. National forest inventory data (FID) can provide
statistical information on areas of different stand origins (natural and planted) in five age classes: young,
middle aged, premature, mature, and overmature for dominant forest species in each province across China.
In addition, it is implemented once every 5 years, making it very hard to derive explicit age information over
space and time. The first national forest age map was produced with 1 km resolution from FID recorded
between 1989 and 1993 in 32 provinces of China [Wang et al., 2007]. This map promoted forest carbon
budget simulation in China [Ju et al., 2007; Wang et al., 2011]. However, the FID used by Wang et al. [2007]
could not well reflect grid-based differences of age within a province. Dai et al. [2011] compiled a national
forest age map at 8 km spatial resolution based on the relationship between provincial mean stand age
retrieved from 1994–1998 forest inventories and growing season AVHRR (Advanced Very High Resolution
Radiometer) NDVI (Normalized Difference Vegetation Index). The saturation of NDVI with age would
definitely result in an underestimation of high stand ages. Therefore, other indicators are required for better
quantification of forest age in China.

Forest biomass has a strong relationship with stand age [Pan et al., 2004; Cienciala et al., 2008; Xu et al., 2010],
and thus, stand age could be inferred from biomass [Zheng et al., 2004; Piao et al., 2005]. However, large-scale
forest biomass estimation is currently still a challenge. Fang et al. [2006] elucidated that forest height was
an effective proxy of regional biomass in mid to high-latitude forests, implying that light detecting and
ranging (LiDAR) techniques can be used to estimate forest biomass based on the relationship of biomass
with forest height over large regions. The latest studies with satellite-borne LiDAR have shown that forest
height could be mapped with LiDAR satisfactorily from regional to global scales [Lefsky et al., 2007;
Duncanson et al., 2010; Lefsky, 2010; Simard et al., 2011]. Such forest height maps provide an ideal opportunity
for estimating large-scale forest biomass [Lefsky et al., 2005b; Fang et al., 2006] and forest age. Recently,
Simard et al. [2011] produced a global wall-to-wall canopy height map for 2005 by combining the Geoscience
Laser Altimeter System estimates and global ancillary variables (http://lidarradar.jpl.nasa.gov/), which was
well consistent with field measurements from 66 FLUXNET sites distributed globally over a broad range of
forest types. Given that China currently lacks a reliable national forest height product, the attempt is
made here to apply the map created by Simard et al. [2011] to estimate forest age in China. The objectives are
to (1) demonstrate a viable approach for combining field observations and remotely sensed forest height in
order to estimate forest stand age; (2) evaluate a spatially explicit data set of forest age estimated from
remotely sensed forest height; and (3) examine the spatial pattern of forest age in China.

2. Data and Methods

Field measurements at 3543 forest plots across China were collected from the literature to establish biomass-
height and age-biomass relationships for major forest types in different regions (Figures 1a–1c). The relevant
empirical relationships between stand age and forest height were further developed (equation (1)) by
using biomass as the transfer parameter, because no general formula is currently available for describing
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the age-height relationship explicitly. Forest age, defined as a mean age of all trees in a grid cell here, was
estimated using an age-height relationship in combination with forest height data.

Age ¼ f 1 Biomassð Þ ¼ f 1 f 2 Heightð Þð Þ (1)

where f1 is the function describing the relationship between forest age (year) and biomass (Mg ha�1), and f2
represents forest biomass as a function of forest height (m). The parameters in f1 and f2 are fitted using
field measurements (Tables 1–3). Finally, forest age is calculated on the basis of height through replacing
biomass in function f1 with function f2 (Table 4).

2.1. Data
2.1.1. Field Measurement Data
In this study, published data from 3543 sampling plots with a wide range of forest types and plot conditions
in China were compiled for fitting parameters in equation (1). The sampling was conducted for the period
from 1979 to 2011. Recorded information of sampling plots includes geographic location, forest type,

Figure 1. Distributions of forest regions, plots, and forest types in China. (a) Forest regions following Fang et al. [2001]; (b) geographical distribution of 3543 forest plots
used; (c) spatial distribution of China’s forest types in 2005. Northeast region includes Heilongjiang (HLJ), Jilin (JL), Liaoning (LN); North region includes Beijing (BJ), Hebei
(HB), Inner Mongolia (IM), Shanxi (SX) and Tianjin (TJ); East region includes Anhui (AH), Fujian (FJ), Jiangsu (JS), Jiangxi (JX), Shandong (SD), Shanghai (SH), Taiwan (TW),
and Zhejiang (ZJ); South region includes Guangdong (GD), Guangxi (GX), Henan (HeN), Hainan (HN), Hubei (HuB), and Hunan (HuN); Southwest region Chongqing (CQ),
Guizhou (GZ), Sichuan (SC), Tibet, and Yunnan (YN); Northwest region includes Gansu (GS), Ningxia (NX), Qinghai (QH), Shannxi (SNX), and Xinjiang (XJ).
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standage, stand density, stand volume, mean tree height and diameter at breast height (DBH) for trees with
DBH> 4 cm, and biomass of whole trees and their component parts (stems, branches, leaves, and roots)
[Zhang et al., 2013].

These plots are evenly distributed in most regions of China except for Xinjiang and the Qinghai-Tibetan
Plateau. Forest types and site conditions of the plots in most provinces are diverse (Figure 1b). In Xinjiang and
the Qinghai-Tibetan Plateau, however, the sampling plots are sparse. Forests in these regions account for only
a small fraction of the national total. Therefore, the lack of enough sampling plots here might have a little
impact on the accuracy of the retrieved national forest age map.
2.1.2. Forest Type Map
A 2005 forest type map with a spatial resolution of 1 km in China generated by the Institute of Remote
Sensing and Digital Earth, Chinese Academy of Sciences [Zhang et al., 2009], was used to delineate the
distribution of forests. In this map, forests were classified into five types (Figure 1c), including deciduous
needleleaf forest (DNF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), evergreen
broadleaf forest (EBF), and mixed forest (MF). Overall map accuracy for the classification was 90% [Zhang
et al., 2009]. According to the forest type map, the total area of China’s forests was about 177.19 × 106 ha in
2005 (excluding Taiwan). This is higher than the value of 155.59 × 106 ha of forest stands reported by the State
Forestry Administration [Chinese Ministry of Forestry, 2009] because of different definitions of forest stands.
2.1.3. Forest Height Data
The global 1 km canopy height map in 2005 produced by Simard et al. [2011] shows a better correspondence
with in situ canopy height at 66 FLUXNET sites (R2 = 0.69 and root-mean-square error (RMSE) = 4.36 m).
However, the canopy height estimates are greatly influenced by geographic location and forest
heterogeneity. The estimates of Simard et al. [2011] are generally higher than those in Lefsky [2010] and the
ICESat (Ice, Cloud, and land Elevation Satellite) map. In this study, the forest canopy height of Simard et al.
[2011] was calibrated using measured mean tree height at 263 plots selected from all sampling plots with
measurements conducted during 2001–2010 (Figure 2). Due to the limited data availability, forest canopy
height values in the northeastern and northwestern regions were calibrated using the same correction
coefficient and other regions of China adopted another one. Forest canopy height values match field

Table 1. Five Types of Theoretical Stand Growth Modela

Model Formula Parameter Range Inflect Point Function f1 Source

R B= a(1� exp(�bA))1/(1-c) a, b, c> 0 A= ln(1/(1� c))/b,
B= ac1/(1�c)

A=�ln(1� B(1�c)/a)/b (B< a(1/(1�c))) Pienaar and Turnbull [1973]

M B= a(1� b exp(�cA)) a> 0, 0< b≤ 1, c> 0 � A= (ln(b)�ln(1� B/a))/c (a(1� b)< B< a) Richer [1979]
L B= a/(1 + exp(b� cA)) a, b> 0 A= b/c, B=2/a A= (b� ln(a/B� 1))/c (a/(1 + exp(b))< B< a) Gadow and Hui [1998]
G B= a exp(�exp(b� cA)) a, c> 0 A= b/c, B= a/e A= (b� ln(ln(a/B)))/c (a/exp(exp(b))< B< a) Charles [1932]
K B= a exp(�b/Ac) a, b, c> 0 A= ((c+1)/bc)1/c,

B= a exp(�(c+1)/c)
A= (b/ln(a/B))1/c (B< a) Zeide [1989]

aModel identifications are Richards, R; Mitscherlich, M; Logistic, L; Gompertz, G; and Korf, K. f1 defined in equation (1) represents forest age (A, year) as function of
forest biomass (B, Mg ha�1): A= f1 (B), calculation procedures for which were obtained by reversing stand growth models. a, b, and c are fitted parameters of
models using field measurements.

Figure 2. Comparison of forest canopy height values and field measurements in China for (a) the northeast and northwest
regions and (b) the east, north, south, and southwest regions. Regressions are significant at the 0.01 level.
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measurements very well (Figure 2). The respective RMSE and R2 values are 3.15 m and 0.41 for the northeast
and northwest regions and 4.18 m and 0.63 for other regions (P< 0.01). The regression slope between
remotely sensed and observed height values is here regarded as a correction coefficient. The remotely
sensed forest canopy height was converted to the mean forest height by division of 1.2281 and 1.4731 for
corresponding regions. In general, forest height is high in the south tropical and subtropical zones, and
northeast Changbai Mountains, but low in the north and northwest regions (Figure 3). The calibrated height
map (Figure 3b) was used to estimate pixel-based forest stand age in conjunction with a forest type map and
an appropriate relationship between stand age and forest height (Table 4).
2.1.4. Forest Inventory Data
Forest inventory data collected as close to the year 2005 as possible, including national, provincial, and
county FID, were obtained from the State Forestry Administration. The data were used to validate estimated
forest stand age. At the provincial level, the seventh FID for 2004–2008 was employed [Chinese Ministry of
Forestry, 2009]. This data set provided provincial statistical information on areas and ages of five age classes
for dominant forest species. At the plot and stand compartment levels, only some provincial and county
inventory data were available, including Heilongjiang (2006), Panshi and Shulan Counties in Jilin (2005),
Guangdong (2007), Jiangxi (2006), and Xiamen City in Fujian (2003). These inventories roughly represented
forests in the northeast, south, and east regions. The provincial inventory design consists of 0.067 ha plots
systematically placed across the forest stands, encompassing a representative range of stand ages,
geographic coordinates, mean forest heights, and forest types. The county inventory investigates forest area,
forest type, stand age, and mean tree height by stand compartment.

2.2. Methods
2.2.1. Estimating Forest Stand Age

1. Step 1. Fitting the biomass-height relationship
Tree height, DBH, and volume are the best independent variables for establishing a biomass estimation
model. According to the theory of forest growth, forest height is related to DBH and volume, which
provide a good theoretical basis for estimating large-scale forest biomass patterns based on the
relationship between biomass and forest height. Statistical analysis has been a commonmethod of fitting
the biomass-height relationship. Widely used regression models include power [Chave et al., 2005; Köhler
and Huth, 2010; Mitchard et al., 2011; Saatchi et al., 2011; Wang et al., 2013], linear [Fang et al., 2006;
Skowronski et al., 2007], the quadratic polynomial [Lefsky et al., 2005b], and exponential functions [Yu et al.,
2010]. Previous studies have shown that biomass-height relationships differ greatly across environmental
gradients and among different forest types [Drake et al., 2003; Pan et al., 2004; Wang et al., 2013]. In this
study, 2157 sampling plots with both stand biomass (aboveground and belowground) and mean height
measurements were first selected from all 3543 sampling plots (Appendix S1 in the supporting information).

Figure 3. Comparison of forest canopy height in China (a) before and (b) after the calibration.
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Then, different models were fitted to quantify biomass-height relationships for major forest types in
different regions of China (Appendix S2 in the supporting information). The optimal models for different
forest types in each region were chosen according to the F significance test.

2. Step 2. Fitting the stand age-biomass relationship
According to earlier studies [Huang, 2009], five theoretical stand growth models, including Richards,
Mitscherlich, Logistic, Gompertz, and Korf models, were selected to describe the relationships between
stand biomass and age (Table 1). In this study, forest stand age was calculated by reversing stand growth
models, which describe the change of biomass with age. The parameters for stand growth models were
estimated by nonlinear regression, using the Levenberg-Marquardt optimization algorithm to minimize the
square of absolute differences between forest age observations and estimates. Both stand age and biomass
measurements from 3171 field plots were used to fit five types of growth models for different forest types
widely distributed in each region of China. The optimal model for each forest type in a region was
determined following statistical significance.

3. Step 3. Estimating forest stand age
Tomap forest canopy height globally, theTerraMOD44B percent tree cover product fromModerate Resolution
Imaging Spectroradiometer (MODIS) was used as a benchmark map [Simard et al., 2011]. In this study, a forest
type map produced using Thematic Mapper (TM) data with higher classification accuracy was used.
Consequently, there are about 28% of forest pixels in the forest type map with remotely sensed height equal
to zero because forest types in these twomaps were not completely consistent. They were evenly distributed
across China. These zero values were replaced with eight neighboring pixel averages of each center pixel by
adopting a “moving window” approach, leaving less than 5% of forest pixels in the forest type map of China
with zero values of forest height. However, these pixels were not further processed. Their ages were labeled as
no data. According to the biomass-height and age-biomass relationships determined in steps 1 and 2 and the
ranges of biomass for the application of function f1 in Table 1, corresponding relationships between forest age
and height in equation (1), and their applicable conditions, were now established. With these relationships
and remotely sensed forest height map, the pixel-based forest age was quantitatively estimated. For pixels
with forest height beyond the application conditions of age-height relationships, their stand ages were
assigned as the corresponding minimal or maximal ages derived from the age-height relationships.

2.2.2. Validating Forest Stand Age
Given the spatial scale of the analysis, it is difficult to conduct a direct validation across the whole of China.
Estimates of FID-based stand age directly reflect the dynamics of forest age caused by both disturbed and
nondisturbed factors, which can serve as ground truth. Based on national forest inventory data, the mean
stand age of each province is calculated as [Zhao, 2004]

Ai ¼ 1
Si

Xn

m¼1

X5

j¼1

SmjAmj (2)

where Ai and Si are the mean stand age and total forest area of province i, respectively; Smj and Amj are the
area and median age of age class j for forest type m; and n is the number of forest types in province i. Then,
averages of pixel-based forest ages estimated from remotely sensed forest height were compared with the
FID estimates for 31 provinces in China with inventory data available.

For the provincial FID, the plots were regularly distributed on 4km×4km, 8 km×4km, and 8km×8km grids, grid
size changing among provinces. Therefore, the number of plots falling within a 1 km2 pixel was one at most.
For the county FID, only the whole compartment within a 1 km2 pixel was used here. When a pixel included more
than one stand compartment, an area-weighted mean age was calculated for each 1km×1km pixel. Observed
ages from plots and stand compartments were used to validate the estimated ages by way of linear regression.
2.2.3. Uncertainty Analysis of Estimated Forest Stand Age
The uncertainties of currently estimated forest ages were mainly caused by uncertainties in remotely sensed
forest canopy height and parameters in the age-height relationships. These parameters were optimized
using field measurements. The uncertainties of estimated forest ages related to them would be small. They
might be primarily caused by uncertainties in remotely sensed forest height. The validation of corrected
remotely sensed forest height using measurements from 263 sampling plots in China yielded a RMSE value of
4.24m. Therefore, the uncertainties of estimated forest age related to forest height were assessed through
deriving equation (1) with the corrected forest height map disturbed by ±1 to 9m (at an interval of 1m).
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In total, 19 forest age maps were generated. Then, the standard deviation for each 1km pixel was calculated
from these 19 age maps and used to characterize the uncertainties in the derived forest age map.

3. Results
3.1. Models for Forest Stand Age Estimation

The optimal biomass-height relationships are shown in Table 2. For all forest types, with the exception of ENF in the
north and northwest regions and DBF in the northeast region, the power function performed best in describing
biomass-height relationships. The fitted models for all forest types show statistically significant at the 0.01 level
with each R2 greater than 0.60, indicating the applicability of thesemodels to estimating forest biomass according
to height in China. Table 3 lists the optimal models for all forest types in each region of China, which predict stand
age based on the stand age-biomass relationships. The R2 values of these models are all above 0.71 (P< 0.01),
confirming the feasibility of stand growth models for estimating forest age in China.

The high R2 values of the biomass-height and age-biomass relationships for different forest types in six
regions nationwide suggest that the approach taken here may yield viable estimations for China’s forest
age based on the age-height relationships (Table 4). These relationships depend on the models given in
Tables 1–3. For most forest pixels, forest ages can be directly estimated from the remotely sensed forest
height map. However, about 17.8% of forest pixels in the forest height map are beyond the scope of the
application conditions of age-height relationships, of which the northeast, north, east, south, southwest,
and northwest regions respectively account for 3.1%, 4.6%, 3.1%, 0.7%, 4.4%, and 1.9% of the national total forest
pixels. The ages of such pixels were assigned the values estimated with the lower or upper boundary height.

3.2. Validation of Estimated Forest Stand Age
3.2.1. Provincial- and Regional-Level Performance
In general, the estimates are in good agreement with the FID values at the provincial and regional levels
(Figure 4). However, the biases for Chongqing and Guizhou are respectively 42 and 38 years higher than the
FID estimates (Figure 4a). From the point of view of the entire country, these errors are acceptable because
forested areas in these two provinces only account for 3.7% of the national total. Forests in Anhui, Fujian,
Guangdong, Gansu, Guangxi, Heilongjiang, Hunan, Inner Mongolia, Jiangsu, Jiangxi, Sichuan, Shandong,
Shanxi, and Tibet make up 64.5% of the national total forest area, and the biases of provincial mean forest

Table 2. Allometric Relationships Between Forest Biomass and Height of Major Forest Types in Different Regions
of Chinaa

Forest Type Region Function f2 R2 F n

DNF NE B=1.8343H1.551 0.87 693.65 104
N, NW B=1.2814H1.7539 0.80 966.11 242
E, S, SW B=3.1252H1.3588 0.79 113.68 33

ENF NE B= 4.041H1.4184 0.87 1400.00 204
N B=10.177H-2.4135 0.69 454.34 208
E B=3.5069H1.4454 0.76 849.48 275
S B=4.5293H1.2521 0.77 277.82 83
SW B=2.4046H1.6297 0.80 256.86 64
NW B=11.378H+0.3809 0.71 270.36 114

DBF NE B=21.238 exp(0.0935H) 0.68 156.17 76
N B=1.5166H1.7134 0.61 413.73 278
NW B=0.9844H1.7414 0.82 336.54 75

E, S, SW B=0.759H1.6733 0.80 205.86 53

EBF E, N, NE, NW B=3.374H1.4748 0.63 110.22 67
S, SW B=1.0782H1.7549 0.63 179.98 108

MF N, NE, NW B=3.7994H1.3619 0.83 206.84 44
E, S, SW B=5.0308H1.3569 0.79 490.89 129

af2 defined in equation (1) represents forest biomass (B, Mg ha�1) as function of forest height (H, m): B= f2 (H). The
biomass-height relationships were fitted using field measurements at 2157 plots. All statistics are significant at the
0.01 level. DNF is deciduous needleleaf forest; ENF is evergreen needleleaf forest; DBF is deciduous broadleaf forest;
EBF is evergreen broadleaf forest; MF is mixed forest. E, N, NE, NW, S, and SW respectively denote Eastern China, Northern
China, Northeastern China, Northwestern China, Southern China and Southwestern China.
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ages in these provinces are all no more than 5 years. Henan, Jilin, Shanghai, Shannxi, Yunnan, and Zhejiang
have biases of estimated provincial mean forest ages within 6–9years. Forest areas in these six provinces occupy
22.2% of the national total. In the above 20 provinces, forests account for 86.7% of the national total and the
differences between estimated provincial mean forest ages and inventory data are smaller than 10years. The
biases of estimated provincial forest age in Beijing, Hebei, Hubei, Liaoning, and Ningxia are between 11 and 13
years, which cover 7.7% of the national total forest area. In the remaining four provinces with forest area
accounting for 1.9% of national total, the departures of estimated provincial mean forest ages from inventory data

Table 3. The Fitted Parameters of Forest Age-Biomass Relationships for Different Forest Types in Six Regions of China Based on Stand Growth Modelsa

Forest Type Region Model

Parameters

R2 N RMSEa b c

DNF NE G 228.1324 1.3351 0.0755 0.80 157 9.05
N G 132.2652 1.6575 0.1047 0.74 231 17.01
E L 301.2842 7.3000 0.4351 0.71 24 4.22

S, SW, NW L 216.3401 1.8860 0.0429 0.76 26 40.03
ENF NE L 187.5991 4.6440 0.1748 0.76 259 18.66

N L 83.3676 3.8361 0.2385 0.76 182 9.06
E L 217.2470 2.4354 0.1380 0.74 375 6.65
S L 305.3722 2.2605 0.0803 0.73 297 8.67
SW G 286.5693 0.5818 0.0184 0.74 311 37.21
NW G 421.6592 0.9413 0.0156 0.77 184 19.22

DBF N, NE G 131.0536 0.7368 0.0235 0.74 225 12.20
E, S, SW K 228.2524 10.4064 1.1124 0.81 124 15.37
NW L 137.2639 2.8626 0.0834 0.72 61 11.46

EBF E, N, NE, NW G 501.6774 0.8718 0.0303 0.75 115 17.71
S M 640.7587 0.9270 0.0082 0.79 203 20.00
SW G 330.5979 0.7789 0.0270 0.75 188 18.73

MF N, NE, NW L 247.0067 5.1220 0.2045 0.82 75 37.25
E, S, SW K 451.5684 6.8928 0.6293 0.88 120 6.03

aForest types, regions, and models are identified in Tables 1 and 2. a, b, and c are model parameters given in Table 1. The age-biomass relationships were fitted
using field measurements at 3171 plots. RMSE is the root-mean-square error (year). All statistics are significant at the 0.01 level.

Table 4. Relationships Between Forest Age and Height for Different Forest Types in Six Regions of Chinaa

Forest Type Region Forest Age Formula Application Conditions

DNF NE A=17.6834� 13.245 ln(4.8233� 1.551 ln(H)) 1.9339<H< 22.4166
N A=15.8309� 9.5511 ln(4.6368� 1.7539 ln(H)) 0.7065<H< 14.0653
E A=16.7777� 2.2983 ln(96.4048H�1.3588� 1) 0.1339<H< 28.8526

S, SW A=43.9627� 23.31 ln(69.2244H�1.3588� 1) 5.0862<H< 22.6114
NW A=43.9627� 23.31 ln(168.831H�1.7539� 1) 5.8617<H< 18.6209

ENF NE A=26.5675� 5.7208 ln(46.4239H�1.4184� 1) 0.5626<H< 14.9653
N A=16.0843� 4.1929 ln(83.3676/(10.177H� 2.4135)� 1) 0.4102<H< 8.4289
E A=17.6478� 7.2464 ln(61.9484H�1.4454� 1) 3.0398<H< 17.3706
S A=28.1507� 12.4533 ln(67.4215H�1.2521� 1) 4.3864<H< 28.8792
SW A=31.6196� 54.3478 ln(4.7806� 1.6297 ln(H)) 6.2684<H< 18.7919
NW A=60.3397� 64.1026 ln(6.0442� ln(11.378H+0.3809)) 2.8219<H< 37.0258

DBF NE A=31.3532� 42.5532 ln(1.8198� 0.0935H) 0<H< 19.4631
N A=31.3532� 42.5532 ln(4.4591� 1.7134 ln(H)) 3.9874<H< 13.4973

E, S, SW A=8.2131/(5.7062� 1.6733ln(H))0.899 0<H< 30.2697
NW A=34.3237� 11.9904 ln(139.4392H�1.7414� 1) 3.1889<H< 17.0378

EBF E, N, NE, NW A=28.7723� 33.0033 ln(5.0019� 1.4748 ln(H)) 5.8720<H< 29.7128
S A=778.8843� 121.9512 ln(640.7587� 1.0782H1.7549) 8.5703<H< 38.0815
SW A=28.8481� 37.037 ln(5.7256� 1.7549 ln(H)) 7.5453<H< 26.1183

MF N, NE, SW A=25.0465� 4.89 ln(65.012H�1.3619� 1) 0.4966<H< 21.4399
E, S, SW A=21.4927/(4.4971� 1.3569ln(H))1.5891 0<H< 27.5016

aForest types and regions are identified in Table 2. Forest stand age (A, year) is obtained as function of height (H, m)
through replacing biomass in the fifth column function f1 of Table 1 with function f2 in Table 2. Application conditions of
forest age estimation are calculated according to the ranges of biomass application of function f1 in Table 1.
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are within 18 and 24years. The biases of mean estimated forest ages in six regions are respectively 4, 2, 2, 2, and
8years older in the east, north, northeast, south, and southwest regions and 7years younger in the northwest
region than the FID estimates (Figure 4b). The northern regions have substantially better results than the southern
regions of China. Province-by-province correlation analysis between the age-height estimates and the FID results
(Figure 5) indicate that the age-height relationship generally captures the magnitude of forest ages in 31
provinces, with R2 and RMSE of 0.53 and 12years (Figure 5a). At the regional scale, the age-height relationship
estimates have a better agreement with the FID estimates, with R2 and RMSE of 0.87 and 4years (Figure 5b).

The area percentages of different classes of estimated age were further compared with the FID estimates
(Figure 6). The estimates of forest age structure using the age-height method are well consistent with the FID
estimates in Anhui, Fujian, Guangdong, Gansu, Guangxi, Henan, Heilongjiang, Hubei, Hunan, Inner Mongolia,
Jiangsu, Jiangxi, Ningxia, Shandong, Yunnan, and Zhejiang. Forest areas in these 16 provinces constitute 67.6%
of the national total. In some regions of north and northeastern plains (Beijing, Hebei, Liaoning, and Tianjin), where

Figure 4. The province-by-province and region-by-region comparisons of estimated forest age based on the relationship
between forest age and height (Age-H) with the forest inventory (FID) estimates: (a) provincial scale and (b) regional
scale. Province letter designations are stated in the Figure 1 caption.

Figure 5. Comparisons of estimated forest age based on relationship between forest age and height (Age-H) and the
forest inventory (FID) estimates for 31 provinces and six regions in China: (a) provincial scale and (b) regional scale.
The solid line is the regression line, while the dash line is the 1:1 line. RMSE is the root-mean-square error (year). All
statistics are significant at the 0.01 level.
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Figure 6. The province-by-province comparisons of estimated forest age for five age classes based on the relationship between
forest age and height (Age-H) with forest inventory (FID) estimates. I, II, III, IV, and V denote young, middle-aged, premature,
mature, and overmature forests, respectively. Province letter designations are stated in the Figure 1 caption.
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highly populated and most forests are young, the age-height method consistently underestimates the areas of
young forests and overestimates the areas of middle-aged forests. For forests spread along the mountain ranges
of central China (Sichuan, Shannxi, and Shanxi), there is consistently an overestimate for middle-aged forests
and an underestimate for old-aged forests. This is also a similar case to the provinces of Hainan, Jilin, Qinghai,
Shanghai, Tibet, and Xinjiang. For forests located in the edge of the Sichuan Basin and the Daba Mountains
(Chongqing) and on the outskirt of the Hengduan Mountains system (Guizhou), they bear some similarity with an
underestimate for young and middle-aged forests and an overestimate for older forests. The good agreement of
estimated forest age with the FID estimates for five age classes at the provincial level further verified the
applicability of the method developed here. However, due to some inaccuracy in the forest height map caused by
complex topographical and socioeconomic factors, the estimates of forest age in Chongqing, Guizhou, and Tianjin
still have large disagreement with the FID estimates.
3.2.2. Pixel Level Performance
Figure 7 presents the comparisons of estimated forest ages with ground observations from the provincial and
county FID for three provinces (Figures 7a–7c) and three counties (Figures 7d–7f). The agreement is statistically
significant and estimated forest ages are linearly correlatedwith observations, with a slight overestimate for young
forests and an underestimate for old forests. The correlations are moderately high with R2 values equal to 0.27,
0.31, and 0.16 for the provincial (Guangdong, Heilongjiang, and Jiangxi) inventory and 0.32, 0.24, and 0.28 for the
county (Panshi, Shulan, and Xiamen) inventory, respectively. Unfortunately, the estimates were not comparedwith
observations over other parts of the country in such way, especially the southwest and south regions, which
contain 46%of the national forest area, because of unavailability of inventory data in these regions. Although there
are only three provincial and three county FID sets nationwide for validation, the results encourage general use of
the method developed here. It seems that estimated forest age is less accurate at the pixel scale than at regional
and provincial scales in view of larger RMSE values ranging from 11 to 21 years. One major reason for this
difference is that the ground observations were made at particular sites with sample areas much smaller than
1km2 (0.067ha and 0.267–46.5ha for provincial and county FID, respectively), while the estimates retrieved from
the age-height relationship are the average ages for 1 km2 areas. At regional and provincial scales, the errors of
individual pixels can be cancelled by each other to some extent.

3.3. Spatial Pattern of China’s Forest Stand Age

Figure 8 illustrates the distribution of estimated forest ages (Figure 8a) and corresponding uncertainties
(Figure 8b). It shows highly spatial heterogeneity of forest age in China, which reflects differences in

Figure 7. The comparisons of estimated forest age based on the relationship between age and height with observed stand age at the plot scale in some provinces
and counties. (a) Guangdong, (b) Heilongjiang, (c) Jiangxi, (d) Panshi, (e) Shulan, and (f ) Xiamen. The solid line is the regression line, while the dash line is the 1:1 line.
RMSE is the root-mean-square error (year). All statistics are significant at the 0.01 level.
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topographical conditions, forest types, and disturbance intensity. Estimated forest age across China ranges from 1
to 281years, with a mean value of 43 years and standard deviation of 16 years (Figure 8a). Forest age shows
definite spatial gradients that increase from the east to the west and from the south to the north. Forests with
stand age less than 40years account for 64% of the national total, primarily located in southern and eastern China
owing to intensive previous human disturbances and successful implementation of many national afforestation
and reforestation programs since the 1980s [Fang et al., 2001]. Forests between the ages of 40 and 60years mainly
exist in the northeast, southwest, east, and south regions of China, covering 16.3% of the national total. In
southeastern Tibet, northeastern Inner Mongolia, northern Heilongjiang and Yunnan, southern Guizhou, and
Xinjiang, forests tend to be older because of slow forest growth and relatively low human impact. There the
dominant age groups are from 60 to 120years. Forests with stand age in excess of 120 years mainly appear in the
northeast (Daxing’anling, Xiaoxing’anling, and Changbai Mountains) and in the southwest subalpinemountains of
China, where natural broadleaf and needleleaf mixed forests are dominantly distributed.

If forests are grouped according to age classes of 1–27, 27–45, 45–65, 65–110, and >110 years, which are
classified in the forest inventory as young, middle-aged, premature, mature and overmature forests,
respectively, forests within corresponding age class estimated in this study account for 38.2%, 31.2%, 13.1%,
11.3%, and 6.2% of China’s total forest area, well consistent with the numbers (33.9%, 33.4%, 14.8%, 12.0%,
and 5.9%, respectively) based on the forest inventory [Chinese Ministry of Forestry, 2009]. The majority of
forests in China are currently young and middle aged, implying large future carbon sequestration potential
by forests in China through forest growth and regrowth [Fang et al., 2001; Pan et al., 2004; Zhang et al., 2013].

Figure 8b shows the spatial distribution of estimated uncertainties in retrieved forest age. High uncertainties
occur in Hengduan Mountains ranges located in the northeastern part of Tibet Plateau due to high sensitivity
of estimated forest age to uncertainties in forest height, complex topographical features, and specific
altitudinal gradient for forests ranging from boreal to subtropical. The uncertainties are also high in
northeastern China, where newly planted young forests and old forests are widely distributed. In the east,
south, and north regions, the uncertainties are mostly about 10 years.

4. Discussion
4.1. Methodology for Forest Stand Age Estimation

Regression analysis has been a widely used method of linking biophysical variables and remote sensing data
to obtain continuous estimates of variables such as biomass at global and regional scales [Cohen et al., 2003;
Dong et al., 2003; Saatchi et al., 2011]. However, this method has seldom been utilized to map forest age

Figure 8. (a) Spatial patterns of China’s forest age in 2005 and (b) its standard deviations that examine uncertainty in the age map (the age estimate for Taiwan is
based on the same approach for eastern China).
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[Zhang et al., 2004; Dai et al., 2011].
Here, forest height was selected as a
predictor of forest age. Early studies
showed that the relationship between
forest age and height could be
described using a linear [Hamilton and
Christie, 1971], exponential [Fang et al.,
2006] or logarithmic function
[Bradford et al., 2008], which is hard to
establish using a uniform expression
at present. Forest biomass is highly
correlated with both forest age and
height. Consequently, it was selected
here as an intermediate variable to
acquire the relationship between
forest age and height. The biomass-
height and age-biomass relationships
change with regions and forest types,
which is taken into account here. The
validation indicates that the approach

proposed in this study is capable of estimating forest age with acceptable accuracy.

Our estimated forest age was comparable to the national mean value estimated based on FID byWang et al.
[2007] and the combined information from FID and remote sensing by Dai et al. [2011], respectively.
However, the map produced in this study reflects more detailed spatial variations of forest age because of the
use of 1 km remotely sensed forest height data and age-height relationships optimized for different forest
types in different regions. Forest age, implicitly reflecting the past disturbance legacy, is a simple and direct
surrogate for the time since disturbance [Pan et al., 2011a]. The age map produced from detailed inventory
data and different sources of data containing information on historical forest disturbance might have high
accuracy [Pan et al., 2011a]. However, this method may be not applicable in other areas since spatially
distributed inventory and disturbance data are not always available. With the consideration of data
availability and urgent requirement for a reliable forest age map in China, remotely sensed forest height is
first used to map the forest age distribution in combination with the age-height relationship derived from
field observations. This method can, to some extent, alleviate the underestimation of old forest age
compared with methods using optical remote sensing data since the LiDAR signal for height detection is less
saturated for old forests. In addition, it can be implemented with limited observations of forest biomass,
height, and age. Therefore, this method can be widely utilized for many regional applications. In this case, the
age estimates are for the year 2005. In future, the approach might be used to estimate regional-scale and
national-scale forest age on a yearly basis if annual remotely sensed forest height data are available.

4.2. Implications of the Forest Stand Age Map

Age-related changes in forest productivity have been recognized for many years. Recent flux measurements
further confirmed the age effect on NEP [Coursolle et al., 2012]. However, NEP cannot be directly estimated
from the age information. Chen et al. [2003] developed a general semiempirical function to describe the
change of NPP with age [Chen et al., 2003; Wang et al., 2011; Zhang et al., 2012]. The effects of stand age on
NPP and NEP could be quantified using forest age and the generalized NPP-age relationship (Fnpp) [Pan et al.,
2011a; Deng et al., 2013]. Figure 9 shows the Fnpp values of forests in China derived from the forest age map
(Figure 8a) and NPP-age relationships fitted using field measurements (Appendix S3 in the supporting
information). Low values (<0.4) indicate low productivity because of young or old forest ages, which are
acting as carbon sources (NEP< 0). Forests with high productivity (Fnpp> 0.7) normally act as large carbon
sinks (NEP> 0) and are widely distributed in most areas of China. This is consistent with outputs from many
previous studies [Fang et al., 2001; Piao et al., 2005;Wang et al., 2007]. With this map, atmospheric inversion of
terrestrial carbon flux can be improved [Deng et al., 2013]. It can also be used to optimize management
strategy for enhancing carbon sequestration and maximizing the profit of forestry [Pan et al., 2011a].

Figure 9. The age effect of forest NPP (Fnpp) derived from the forest age
map (Figure 8a) and the NPP-age relationship.
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Forest age structure greatly affects the magnitude and spatial distribution of regional carbon budget. It has
been incorporated into distinct modeling approaches, i.e., forest inventory [Kurz and Apps, 1999; Pan et al.,
2011a], process-based models [Chen et al., 2000], and atmospheric CO2 inversions [Deng et al., 2013], for
improving carbon budget estimation [Ju et al., 2007; Zhang et al., 2012]. Many studies [Fang et al., 2001; Piao
et al., 2005; Wang et al., 2007; Pan et al., 2011b] indicated that forests in China have been acting as a carbon
sink in recent decades. However, the magnitudes of this sink varied considerably in different studies. Carbon
budget estimation is very sensitive to forest age. The errors of 5 years in forest age might cause uncertainties
of 12–22% and 5–9% in simulated net biome productivity and NPP, respectively [Chen et al., 2003]. The
resulting age map with high quality will be beneficial for improving the estimation of carbon budget and the
projection of its future trend for China’s forests.

4.3. Uncertainty and Major Error Sources of Forest Stand Age

Forest ages estimated using the age-height relationships require adequate and representative field
measurements. If the relationship could not be established for a certain forest type in a region due to
the unavailability of field data, relationships from a neighboring region were adopted. In addition,
field-measured forest height values of sampling plots for several forest types varied in a much smaller
range than the remotely sensed values, notably for DBF in the northeast (3.60–17.50 m versus
4.88–27.69m) and north regions (4.00–16.00m versus 2.71�25.80m) (Appendices S1 and S2 in the
supporting information). Thus, height values of some pixels in the forest height map were beyond the
boundary conditions that the age-height relations are applicable. The ages for these pixels were
assigned the values estimated with the lower or upper boundary height. Due to such simplification,
the stand age for old forests might be underestimated in areas of Jilin and Shanxi (Figure 4).
Fortunately, only 5.9% of forests are presently overmature in China [Chinese Ministry of Forestry, 2009].
Consequently, the spatial pattern of forest age would have not been significantly affected, despite the
possibility of slight underestimation of forest age for old forests.

The forest height map employed here is one of the best descriptions of forest vertical structure at regional
and global scales currently available [Simard et al., 2011]. Its estimates are highly variable due to the impacts
of forest heterogeneity and topography [Lefsky et al., 2005b; Duncanson et al., 2010; Simard et al., 2011]. The
uncertainties of forest age calculated using this forest height map plus perturbations of ±1 –9 m range from
less than 15 years in most regions to more than 50 years in southeastern Tibet and northeastern Sichuan
(Figure 8b), indicating high sensitivity of estimated forest age to forest height. Therefore, calibration of the
remotely sensed forest height against more ground data is needed. In this study, only two coefficients
across the whole of China are fitted to correct the remotely sensed forest canopy height product for
different regions. In reality, the errors of remotely sensed forest height might change spatially.
Determining the correction coefficient for each region or province could further remedy the bias in the
remotely sensed forest height and consequently improve the estimation of forest age. Large errors in
age estimation for Chongqing and Guizhou primarily resulted from an overestimate of forest height
induced by rough terrains and heterogeneous forests [Tian et al., 2011]. Forest height is also influenced
by increasing human disturbance and urbanization (such as Beijing, Hebei, Liaoning, and Tianjin). They
all make the estimates of forest age difficult because of the complicated forest structure. Forest height
is the predictor of forest age. So more efforts are required to improve the forest height map and thus
reduce uncertainties of forest age estimation.

Validation of pixel-based forest age is a real challenge. In this study, different types of FID were used as
benchmarks to validate the resulting age map. The national FID does not include age observations per se, so
forest age in each province or region was estimated as the area-weighted mean of the median value of
different age classes for all forest types. This is a widely used method for calculating mean forest age from
national statistical inventory data. However, the mean forest age calculated in this way might include some
uncertainties if the forest ages are not evenly distributed in each age class. At present, there is essentially no
effective approach to validate model results using plot measurements because of the mismatch of scales
between field observations and model estimate. The performance of the model estimates at the individual
pixel level is likely to vary with the number of available field observations [Jenkins et al., 2001; Zheng et al.,
2003]. Only observations of one plot from the provincial FID and one to several compartments from the
county FID were used to validate the average ages of 1 km pixels. These might influence the validation
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performance of the resulting age map at the plot and compartments levels. However, it should be kept in
mind that the provincial and county FID bases are currently the best data sets available to validate estimated
pixel-based forest age because they provide explicit information on the spatial distribution of forest age. In
this study, the validation of estimated forest age using spatially distributed provincial and county FID bases is
far from sufficient, especially in the southwest and south regions, with approximately 50% of the national
total forest area.

The quantitative assessment of uncertainties for the estimated forest age is a challenge and important for
proper applications of this map. The uncertainties were quantified using the standard deviations of estimated
forest ages, which were generated through perturbing remotely sensed forest height. This implicitly assumes
that the fitted age-height relationships are perfect and the errors of remotely sensed forest height are
spatially invariant. Such assumptions are not always valid. The uncertainties estimated in this way are only the
first order of approximation.

The forest age map derived here is only a metadata-based result. In many cases, trees have different
ages in a pixel of 1 km resolution, so the forest age assigned by a single value may not be practical
unless there is a very distinct disturbance and regeneration activity, such as a clear-cut followed by
newly planted forests [Bradford et al., 2008; Pan et al., 2011a]. The resulting map is most appropriate for
large-scale studies and forests with a relatively even-aged stand structure. Forests undisturbed for long
periods of time tend to develop an uneven-aged stand structure as canopy gaps become filled with
younger trees [Pregitzer and Euskirchen, 2004; Luyssaert et al., 2008]. In such mosaic forest structures,
LiDAR points are more likely to miss tall trees, resulting in an underestimate of the forest height for old
forests [Simard et al., 2011]. On the other hand, probably due to the presence of snags and stumps in
the small stands, LiDAR-derived height for young forests might be overestimated [Lefsky et al., 2005a]. It
is important to account for age overestimation in young forests and underestimation in old forests. The
method used here to estimate stand age from mean tree age would have different effects on age
estimation at each stage of forest growth [Bradford et al., 2008].

5. Conclusions

In this paper, the forest age map in 2005 was produced using a calibrated forest height map and the age-
height relationships indirectly obtained from field observations for major forest types in different regions of
China. The following conclusions can be drawn:

1. Our estimated results match the FID estimates very well, with a R2 of 0.87, a RMSE of 4 years, and 2–8 years
biases for mean forest ages in different regions and a R2 of 0.53 and a RMSE of 12 years for provincial mean
forest ages. In provinces with 86.7% of national total forests, the difference between retrieved and
FID-based provincial mean ages are less than 10 years. The validation using provincial and county FID
also show the significant agreement between retrieved forest age and ground truth. These results indi-
cate that remotely sensed forest height combined with age-height relationships can act as a practically
useful tool to map forest age over large areas.

2. The spatial pattern of forest age in China showed significant heterogeneity. In southern and eastern
China, most forest stand age was less than 40 years. Forests more than 120 years old were mainly in
the northeast mountains and the southwest subalpine mountains of China, accounting for 4.7% of the
total forest area. In southeastern Tibet, Xinjiang, northern Heilongjiang and Yunnan, northeastern Inner
Mongolia, and southern Guizhou, forest ages were mostly between 60 and 120 years. The forest age and
its standard deviation averaged 43 and 16 years in China.

This study is the first attempt to map forest age distribution based on forest height and observation
data. It shows promising results and provides a benchmark map for characterizing forest carbon
dynamics accurately, evaluating disturbance impacts, and predicting future forest carbon sequestration
potential. However, the estimates of forest age using empirical methods are usually coupled with high
uncertainties, largely arising from great spatial variability in age distribution, inadequate field plots, the
forest height map of limited quality, and the restricted applicability of the age-height relationship at
different scales. Reducing such sources of uncertainty depends on improving the quality of data used to
estimate forest age.
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