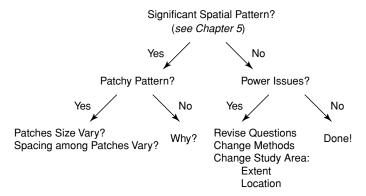

SPATIAL ANALYSIS A Guide for Ecologists

The spatial and temporal dimensions of ecological phenomena have always been inherent in the conceptual framework of ecology, but it is only recently that they have been incorporated explicitly into ecological theory, sampling design, experimental design and models. The number and variety of statistical techniques for spatial analysis of ecological data are burgeoning and many ecologists are unfamiliar with what is available and how the techniques should be used correctly. This book gives an overview of the wide range of spatial statistics available to analyse ecological data, and provides advice and guidance for graduate students and practising researchers who are either about to embark on spatial analysis in ecological studies or who have started but are unsure how to proceed. Only a basic understanding of statistics is assumed and many schematic illustrations are given to complement or replace mathematical technicalities, making the book accessible to ecologists wishing to enter this important and fast-growing field for the first time.


MARIE-JOSÉE FORTIN is an associate professor in the Department of Zoology at the University of Toronto. Her research focuses on investigating the spatial dynamic processes responsible for creating and maintaining landscape heterogeneity, which in turn facilitates the persistence of species and their conservation. She has active research projects in landscape and conservation ecology, spatial ecology, spatial statistics and forest ecology.

MARK DALE is a professor in the Department of Biological Science at the University of Alberta, and Dean of the university's Faculty of Graduate Studies and Research. His area of research is statistical plant ecology, most recently focusing on the development of spatial pattern in plant communities, much of which is summarized in his book *Spatial Pattern Analysis in Plant Ecology* (Cambridge University Press, 1999). More generally, he works on the development and evaluation of statistical methods with which to test ecological hypotheses, and on their application in answering ecological questions.

Decision-Tree of the Spatial Analyses Presented in the Book

Key Questions to Ask while Analysing Spatial Ecological Data

SPATIAL ANALYSIS

A Guide for Ecologists

MARIE-JOSÉE FORTIN MARK R. T. DALE

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

www.cambridge.org
Information on this title: www.cambridge.org/9780521804345

© M.-J. Fortin and M. R. T. Dale 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data
Fortin, Marie-Josée, 1958—
Spatial analysis: a guide for ecologists / Marie-Josée Fortin, Mark R. T. Dale.
p. cm.
Includes bibliographical references and index.
ISBN 0 521 80434 5 (alk. paper) ISBN 0 521 00973 1 (alk. paper)
1. Ecology – Statistical methods. 2. Spatial analysis (Statistics) I. Dale,
Mark R. T. (Mark Randall Thomas), 1951—II. Title.
QH541.15.S72F66 2005
577'.015'195 – dc22 2004048884

ISBN-13 978-0-521-80434-5 hardback ISBN-10 0-521-80434-5 hardback

ISBN-13 978-0-521-00973-1 paperback ISBN-10 0-521-00973-1 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> À Ferko et à Ian To Phyllis, John and Martha

Contents

	Pref	face	page xi	
1	Intro	1		
		Introduction	1	
	1.1	Process and pattern	2	
	1.2	Spatial pattern: spatial dependence versus spatial		
		autocorrelation	6	
	1.3	The concept of stationarity	11	
	1.4	Sampling	13	
		1.4.1 Ecological data	14	
		1.4.2 Sampling design	18	
	1.5	Spatial statistics	25	
		1.5.1 Significance testing of ecological data	26	
	1.6		30	
2	Spat	32		
		Introduction	32	
	2.1	Mapped point data in two dimensions	33	
		2.1.1 Distance to neighbours methods	33	
		2.1.2 Refined nearest neighbour analysis	35	
		2.1.3 Second-order point pattern analysis	37	
		2.1.4 Bivariate data	43	
		2.1.5 Multivariate point pattern analysis	47	
	2.2	Mark correlation function	55	
	2.3	Networks of events	57	
	2.4	Network analysis of areal units	64	
	2.5	Point patterns in other dimensions	75	
		2.5.1 One dimension	75	
		2.5.2 Three or more dimensions	81	
	2.6	.6 Contiguous units analysis		

vii

vii	i		Contents	
		2.6.1	Quadrat variance methods	82
		2.6.2	Significance tests for quadrat variance methods	85
		2.6.3	Adaptations for two or more species	88
		2.6.4	Two or more dimensions	91
		2.6.5	Spectral analysis and related techniques	95
		2.6.6	Wavelets	96
	2.7	Circu	mcircle methods	98
		2.7.1	Univariate analysis	99
		2.7.2	Bivariate analysis	100
		2.7.3	Multivariate analysis	103
	2.8	Concl	luding remarks	103
3	Spat	ial ana	lysis of sample data	111
		Introd	luction	111
	3.1	How t	to determine 'nearby' relationships among sampling units	113
	3.2	Join c	ount statistics	118
		3.2.1	Considerations and other join count statistics	120
	3.3	Globa	al spatial statistics	122
		3.3.1	Spatial autocorrelation coefficients for one variable	124
			Variography	132
		3.3.3	Fractal dimension	139
		3.3.4	Sampling design effects on the estimation of	
			spatial pattern	142
		3.3.5	Spatial relationship between two variables	147
		3.3.6	Spatial relationships among several variables	147
		Local spatial statistics		153
	3.5	_	polation and spatial models	159
			Proximity polygons	160
			Trend surface analysis	161
			Inverse distance weighting	164
			Kriging	165
			uding remarks	170
4	Spat	•	titioning of regions: patch and boundary	174
			luction	174
	4.1		identification	175
			Patch properties	175
		4.1.2	Spatial clustering	176
		4.1.3	Fuzzy classification	180
	4.2		dary delineation	184
		4.2.1	Ecological boundaries	184
		4.2.2	Boundary properties	184

			Contents	ix
		4.2.3	Boundary detection based on several variables	186
			Boundary statistics	199
		4.2.5	Overlap statistics	202
		4.2.6	Boundary detection based on one variable	205
	4.3	Concl	uding remarks	210
5	Dea	ling wi	th spatial autocorrelation	212
		Introd	luction	212
	5.1	Soluti	ons	221
		5.1.1	Quick fixes	221
		5.1.2	Adjusting the effective sample size	222
		5.1.3	Other kinds of models	229
		5.1.4	Particular examples	234
		5.1.5	Restricted randomization and bootstrap	239
		5.1.6	Model and Monte Carlo	242
	5.2	More	on induced autocorrelation and the relationships between	
		variab	les	243
	5.3	Mode	ls and reality	247
	5.4	Consi	derations for sampling and experimental design	248
		5.4.1	Sampling	248
		5.4.2	Experimental design	253
	5.5	Concl	uding remarks	254
6	Spat	io-tem	poral analysis	256
		Introd	luction	256
	6.1	Chang	ge in spatial statistics	261
	6.2	Spatio	o-temporal join count	263
	6.3	Spatio	o-temporal analysis of clusters and contagion	266
	6.4	Polyg	on change analysis	269
	6.5	Analy	rsis of movement	274
	6.6		ss and pattern	291
			Tree regeneration, growth and mortality	291
		6.6.2	Plant mobility	292
		6.6.3	Lichen boundaries	293
	6.7	_	o-temporal orderliness and spatial synchrony	299
	6.8	Chaos		305
	6.9		uding remarks	315
		6.9.1	Recommendations	316
7	Closing comments and future directions			
			to basics	317
	7.1	_	amming skills	320
	7.2	Statio	narity	320

X	Contents		
	7.3	Null hypotheses	322
	7.4	Numerical solutions	323
	7.5	Statistical difficulties	325
	7.6	Randomization and restricted randomization tests	326
	7.7	Complementarity of methods	328
	7.8	Future work	333
	Appendices		336
	Refe	338	
	Inde	358	

Preface

Spatial analysis has become the most rapidly growing field in ecology. This popularity is directly related to at least three factors: (1) a growing awareness among ecologists that it is important to include spatial structure in ecological thinking; (2) the alteration of landscapes around us at an increasing rate, which requires a constant re-evaluation of their spatial heterogeneity; and (3) the availability of software designed specifically to perform spatial analyses. One major problem with spatial statistics software is that they are often not used correctly. Incorrect application arises because: (1) ecologists have not been properly trained about issues of scale; and (2) ecologists do not realize fully the implications of the fact that spatially autocorrelated data are not independent, and thus violate the assumptions of the familiar parametric statistics. The purpose of this book is to fill the gap between the current need for spatial analysis and the uncertainty of many ecologists on how to perform these kinds of analysis correctly.

The motivation for this book is as the title suggests; it is intended as a guide for ecologists through the large array of methods available for spatial analysis. Given that the scope of this book is quite broad, it is not as specialized as Dale (1999), which concentrates on the analysis of static spatial pattern. It is crafted as a reference book that could be used as a text in a course introducing ecology students to spatial analysis. The intent is that the book will be a useful guide to help both those who do not know how to start dealing with spatial analysis in ecological studies and those who have started but are unsure how to proceed. Each chapter is more or less self-contained but there are several treads that link them together, including the application of methods and their usefulness in addressing ecological questions. Our goal is to provide a broad overview, as much as possible, of the various well-established spatial methods. Hence, we do not provide much of the theoretical background or mathematical derivations (which are both available elsewhere, in more specialized texts such as Cressie 1993); but we hope that we provide sufficient detail for ecologists to apply and understand the methods. We do

xii Preface

not cover all the methods that have ever appeared in print; we have been selective, but we have tried to go beyond what is readily available in the ecological literature, and to include references from fields such as geography, geology and epidemiology, where appropriate.

Most ecological questions are aimed at a better understanding of the complexity of nature and how it works, by testing hypotheses about ecological processes and their interactions. This knowledge-building is based on observation, pattern detection, experimentation and modelling. Hence for ecologists, pattern recognition is only one step in a series to disentangle the complexity of natural systems. Thus, the ecological motivation for performing spatial analysis is to detect pattern, but that is only the beginning of answering a bigger question. Ecologists then want to understand the process that generates the pattern. Geographers are probably like ecologists in that the description is of interest, but not the final goal. Epidemiology is essentially applied ecology: looking for pattern to find the process. The classic example is John Snow's study in the 1850s that used the spatial pattern of disease incidence to determine that the Broad Street pump in London was the source of a cholera outbreak (cf. Haining 2003). Identifying the pattern leads to an understanding of the system that gave rise to it. In ecology, however, many of the puzzles are of much greater complexity than tracing the source of disease. Consider the complexities of the processes that give rise to the spatial arrangement of 20 species of tree in a temperate forest . . . and then those for a tropical forest with hundreds of tree species . . . and then all the insects in the tropical forest . . .

This book stems from years of teaching by both authors in their respective universities. Also, it results from career-long learning and from collaborating with our mentors and colleagues: Barry Boots, Ferko Csillag, Geoffrey M. Jacquez, Pierre Legendre, Neal Oden, Chris Pielou, Robert Sokal, Tony Yarranton, the NCEAS working group on 'Integrating the Statistical Modeling of Spatial Data in Ecology', and many others.

We were fortunate to have several people helping along the way with all the details. We thank those who helped: creating the figures: Gillian Forbes, Patrick James, Stephanie Melles and Agnes Wong; editing the various versions of the text: Gillian Forbes, Stephanie Melles and Rebecca Torretti; carrying out the spatial analyses of the data: Patrick James, Yuanyuan Liang, Stephanie Melles and Agnes Wong; with the field work: Ilka Bauer, Vernon Peters, Steve Kembel, Michael Simpson and Agnes Wong. Also, we were privileged to have access to excellent software packages, thanks to Mike Rosenberg (PASSAGE) and Geoffrey Jacquez (BoundarySeer and ClusterSeer by TerraSeer 2001).

For their comments and help on earlier versions of the chapters, we are grateful to: Ferko Csillag, Stewart Fotheringham, Norm Kenkel, Charles Krebs, Pierre Legendre, Stephanie Melles, Evie Merrill, Joe Perry and Mike Rosenberg. We need

Preface xiii

to thank Joe Perry also for discussion on animal movement analysis. Ferko Csillag provided indispensable technical support for the wavelet analysis example: many thanks. Furthermore, one of us (M.-J. F.) benefited from a constant source of spatial statistics clarification and stimulating discussion, as well as moral support, in the person of Ferko Csillag; it was immensely appreciated.

Finally, we acknowledge the financial support that made possible the research that contributed to the material in the book from the Natural Sciences and Engineering Research Council of Canada and from the University of Alberta. Thanks also to the University of Toronto and the University of Alberta (and our sympathetic immediate 'bosses', James Thomson and Carl Amrhein) for the time to complete this project.